

Thomas A. Edison

Johnson,	White,	Baldree,	Saunders,	Gutierrez,	Rupani,	Marks,
Jacob	Aja	Michael	Ann	Carlos	Deshna	Andre
Mckinnon,	Muensida,	Macon,	Murchison,	Korshoff,	Arriaran,	Taylor,
Kaliyah	Ailada	Jalen	Ashja	Madelyn	Andre	Erica
Orr,	Johnson,	Strickland,	Kiernon,	Moon,	Barton,	Johnson,
Roderick	Trevor	Madalyn	Jackson	Asia	Johnathan	Antonio
			Ramos, Alexandro	Shannon, Derrick	Stewart, Cody	

Lesson 3-6 Write Linear Equations

1. Which of the following equations is in point-slope form?

A.
$$x-8 = 7(y-1)$$

C. $2x-3y=6$

2. Write an equation in point-slope form for the line that passes through (3, 5) with a slope of 1.

B. y = 6x - 2

D. y-2=3(x-5)

A.
$$y - 5 = 1(x + 3)$$

B. $y - 5 = -(x - 3)$
C. $y + 5 = 1(x - 3)$
D. $y - 5 = 1(x - 3)$

3. Write an equation in point-slope form for the line that passes through (6, -4) with a slope of -4. A. y+4=-4(x+6) B. y+4=4(x-6)C. y+4=-4(x-6) D. y-4=-4(x-6)

A.
$$y + 4 = -4(x + 6)$$

B. $y + 4 = 4(x - 6)$
D. $y - 4 = -4(x - 6)$

4. Write an equation in slope-intercept form for the line that passes through (2, 4) and (4, 5).

C. $y = x - \frac{1}{3}$ **B.** y = x - 3**D.** $y = \frac{1}{2}x + 3$

5. The cost of taking art classes is shown in the table. Write an equation in point-slope form to represent the cost y of attending x art classes.

Number of Classes	Cost (\$)	
5	75	
10	150	

m=1/2

$$A. y - 75 = 15(x - 5)$$

B.
$$y - 15 = 75(x - 5)$$

B.
$$y - 15 = 75(x - 5)$$
 C. $y - 75 = 5(x - 15)$ **D.** $y - 5 = 15(x - 75)$

y2-y1/x2-x1

5-4/4-2=1/2

y=1/2x+3

4.) What form? SLOPE-INTERCEPT!!

(2,4) & (4,5).

3) What form? POINT SLOPE!!! (6, -4) with a slope of -4

$$y-yl=m(x-xl)$$

$$y-(-4)=-4(x-6)$$

Unit – 6 – Chapter 3 – Lesson 5 Graph a Line Using Intercepts
Slope-Intercept Form (pg.210)
-TheX-intercept of a line is the x-coordinate of the point where the graph crosses the
x-axis
• To find the \times - intercept, let $y = 0$
 To find the X - intercept , let y = O To find the Y - intercept , let x = O
Standard Form (pg. 211)
$A \mathbf{x} + B \mathbf{y} = C$
Unit – 6 – Chapter 3 – Lesson 6 Write Linear Equations
Point-Slope Form of a Linear Equation (pg.222)
Equation:
y – = m (x –)
** The point-slope form of a linear equation is tied DIRECLY to the definition of slope. $\frac{y_2 - y_1}{x_2 - x_1} = m$
**You can write an equation of a line in <u>point</u> <u>slope</u> form when you are given the <u>slope</u> and the <u>coordinates</u> of a point on the line that is NOT the <u>y</u> <u>intercept</u> .

Unit – 6 – Chapter 3 – Lesson 7 Solve System of Equations by Graphing
Systems of Equations (pg. 234)
Two or more equations with the same set of variables are called a System of equations
Number of Solutions (pg. 236)
• If the lines intersect , there is ONE solution.
• If the lines are <u>parallel</u> , there is <u>NO</u> solution.
• If the lines are the <u>same</u> , there is an <u>infinite</u> <u>number</u> <u>of</u> solutions.
Slopes & Intercepts(pg.237):
 Different slopes & y-intercepts, there is One solution, and only One solution.
 Same slope & different y-intercepts, there is NO solution.
• Same slope & same intercept, there is an <u>infinite</u> number of solutions.
Unit – 6 – Chapter 3 – Lesson 8 Solve System of Equations Algebraically
Solve a System Algebraically (pg.244)
Substitution is an algebraic model that can be used to find the exact solution of a system of
equations.
Slope-Intercept & Standard forms: **Sometimes one or both equations are written in standard form.

When solving a system by <u>gubstitution</u>, one of the equations should be solved for either x or y.

2. Peter makes \$6 an hour raking leaves and \$8 an hour babysitting. Last week, he earned \$100 working 15 hours. Solve the system by substitution to find the number of hours he working babysitting and raking leaves.

$$r + b = 15$$

$$6r + 8b = 100$$

A. Raking leaves: 8 h Babysitting: 6 h

B. Raking leaves: 6 h
Babysitting: 8 h

C. Raking leaves: 10 h
Babysitting: 10 h

D. Raking leaves: Th 10 h
Babysitting: 10 h 5 h