

King,	Cardona,	Cook,	Goodner,	Brown,	Boshra,	Falls,
Miya	Luis	Raymond	Keonshay	Kyron	Jouvani	Jason
Al-magsosi,	Mehdiyar,	Trotter,	Fails,	Sanders,	Solis,	Armstrong,
Ali	Erica	Enya	Garth	Seth	Angel	Olivia
Farrar,	Levy,	Anderson,	Davis,	Liggett,	Fails,	
Austin	Dov	Kevin	Fenesha	Eric	Elljah	
					J	

Lesson 3-6 Write Linear Equations

1. Which of the following equations is in point-slope form?

A.
$$x - 8 = 7(y - 1)$$

C. $2x - 3y = 6$

B.
$$y = 6x - 2$$

D. $y - 2 = 3(x - 5)$

2. Write an equation in point-slope form for the line that passes through (3, 5) with a slope of 1.

A.
$$y - 5 = 1(x + 3)$$

B.
$$y - 5 = -(x - 3)$$

C.
$$y + 5 = 1(x - 3)$$

D.
$$y - 5 = 1(x - 3)$$

Write an equation in point-slope form for the line that passes through (6, -4) with a slope of -4.

A. y + 4 = -4(x + 6)B. y + 4 = 4(x - 6)C. y + 4 = -4(x - 6)D. y - 4 = -4(x - 6)

A.
$$y + 4 = -4(x + 6)$$

D.
$$y-4=-4(x-6)$$

4. Write an equation in slope-intercept form for the line that passes through (2, 4) and (4, 5).

A.
$$v = x + 3$$

B.
$$y=x-3$$
 C. $y=x-\frac{1}{3}$

5. The cost of taking art classes is shown in the table. Write an equation in point-slope form to represent the cost y of attending x art classes.

Number of Classes	Cost (\$)	
5	75	
10	150	

A.
$$y - 75 = 15(x - 5)$$

$$\mathbf{R}_{-1} = 75(\mathbf{r} - 5)$$

$$C_{-}v - 75 = 5(r - 15)$$

$$D_{v-5} = 15(r-75)$$

(2,4) & (4,5).

$$\frac{5-4}{4-2} = \frac{1}{2} = m$$

 $4 = \frac{1}{2} (2) + b$ $\frac{2}{3} = 1$ 3 = b**B.** y - 15 = 75(x - 5) **C.** y - 75 = 5(x - 15) **D.** y - 5 = 15(x - 75)

3) What form? POINT SLOPE!!! (6, -4) with a slope of -4 $Y-Y_1=m(X-X_1)$

$$y-y_1=m(x-x_1)$$

$$Y - (-4) = -4(x - 6)$$

Slope-Intercept Form (pg.210)

-The x-intercept _ of a line is the x-coordinate of the point where the graph crosses the x-axis.

- To find the $\frac{X}{Y}$ intercept, let $y = \frac{O}{A}$.

Standard Form (pg. 211)

$$A x + B y = C$$

Unit - 6 - Chapter 3 - Lesson 6 Write Linear Equations

Point-Slope Form of a Linear Equation (pg.222)

Equation:

$$y - \underbrace{\chi}_{++} = m (x - \underbrace{\chi}_{+})$$
** The point-slope form of a linear equation is tied DIRECLY to the definition of slope. $\frac{y_2 - y_1}{x_2 - x_1} = m$

**You can write an equation of a line in _point _ glope __ form when you are given the glope and the coordinates of a point on the line that is NOT the y - intercept

Unit – 6 – Chapter 3 – Lesson 7 Solve System of Equations by Graphing
Systems of Equations (pg. 234)
Two or more equations with the same set of variables are called a System of equations
Number of Solutions (pg. 236)
• If the lines intersect , there is ONE solution.
• If the lines are <u>parallel</u> , there is <u>NO</u> solution.
• If the lines are the <u>same</u> , there is an <u>infinite</u> <u>number</u> <u>of</u> solutions.
Slopes & Intercepts(pg.237):
 Different slopes & y-intercepts, there is One solution, and only One solution.
 Same slope & different y-intercepts, there is NO solution.
• Same slope & same intercept, there is an <u>infinite</u> number of solutions.
Unit – 6 – Chapter 3 – Lesson 8 Solve System of Equations Algebraically
Solve a System Algebraically (pg.244)
Substitution is an algebraic model that can be used to find the exact solution of a system of
equations.
Slope-Intercept & Standard forms: **Sometimes one or both equations are written in standard form.

When solving a system by <u>gubstitution</u>, one of the equations should be solved for either x or y.

2. Peter makes \$6 an hour raking leaves and \$8 an hour babysitting. Last week, he earned \$100 working 15 hours. Solve the system by substitution to find the number of hours he working babysitting and raking leaves.

$$r + b = 15$$

$$6r + 8b = 100$$

A. Raking leaves: 8 h Babysitting: 6 h

B. Raking leaves: 6 h
Babysitting: 8 h

C. Raking leaves: 10 h
Babysitting: 10 h

D. Raking leaves: Th 10 h
Babysitting: 10 h 5 h